Abstract

Recently, the first generation of mass production of FinFET-based microprocessors has begun, and scaling of FinFET transistors is ongoing. Traditional capacitance and resistance models cannot be applied to nonplanar-gate transistors like FinFETs. Although scaling of nanoscale FinFETs may alleviate electrostatic limitations, parasitic capacitances and resistances increase owing to the increasing proximity of the source/drain (S/D) region and metal contact. In this paper, we develop analytical models of parasitic components of FinFETs that employ the raised source/drain structure and metal contact. The accuracy of the proposed model is verified with the results of a 3-D field solver, Raphael. We also investigate the effects of layout changes on the parasitic components and the current-gain cutoff frequency (fT). The optimal FinFET layout design for RF performance is predicted using the proposed analytical models. The proposed analytical model can be implemented as a compact model for accurate circuit simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call