Abstract
This article describes the performance optimization of wind turbine rotors with active flow control. The active Gurney flap concept was tested in the wind tunnel under dynamic AoA variations to simulate unsteady inflow conditions. A high-deflection micro flap was actuated by four digital electric servos with a maximum deflection rate of 360°/sec. A custom code was created to allow dynamic AoA variations of the test wing with simultaneous dynamic force measurements. During the dynamic investigations, various control strategies were tested, starting from standard PID controllers with semi-empirical parameter tuning models to Direct Inverse Controllers with neural network tuning strategies and pure self-learning neural network controllers. The results of the closed-loop measurements using the manually tuned PID controller showed a reduction potential for the dynamic lift loads in the range of 70% as well as a stable controller behavior. The Direct Inverse Controller not only showed a load reduction of 36.8%, but also significant improvement potential with respect to its fine-tuning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.