Abstract

While wetlands have been extensively investigated for restoration and global warming concerns, less attention has been paid to utilizing them for clean energy generation. Another abundant renewable bio-resource currently polluting our environment is solid wastes, where 600 ̶ 700 million tons/y of waste is exposed in an unmanaged way. To mitigate these environmental impacts, this study explored the co-liquefaction mechanism of wetland peat with organic solid wastes (OSW) for lighter biocrude conversion. The performance of the process was optimized by feedstock ratio and temperature variation for a control heating time of 60 mins and feedstock to the solvent mixing ratio of 1:13. The optimum condition was obtained for OSW and peat (3:1) ratio at 320 °C that yielded 52% biocrude with a 60% lighter hydrocarbon fraction. Co-liquefaction improved biocrude energy content (37.4 MJ/kg) with higher energy recovery (77%). Superior hydrocarbons such as 48% ester (esterification), 27% hydrocarbon (decarboxylation), and 19% organic acids (deamination) were detected in the co-liquefaction sample along with a small amount of N and O heterocyclic compounds and amides. The economic assessment predicted that this waste-to-energy approach would potentially generate a revenue of $ 517 per ton of organic waste-peat mixture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.