Abstract

Numerical simulations can provide the physical insights into the carrier transport mechanism in the solar cells, and the factors influencing their performance. In this paper, perovskite solar cell (PSC) based on the mixed perovskite (CH3NH3Pb(I1-xBrx)3 has been numerically simulated using the SCAPS simulator. A comparative analysis of different electron transport layers (ETLs) based on their conduction band offsets (CBO) has been performed, while Spiro-OMeTAD was used as a hole transport layer (HTL). Among the proposed ETLs, CdZnS performed better and demonstrated the power conversion efficiency (PCE) of 25.20%. Also, the PCE of the PSC has been optimized by adjusting the doping concentrations in the ETL, Spiro-OMeTAD layer, and the thickness of the perovskite light absorber layer. It was found that the doping concentration of 1021 cm−3 for the CdZnS based ETL and 1020 cm−3 for Spiro-OMeTAD are the optimum concentrations values for demonstrating enhanced efficiency. A 600 nm thick perovskite layer has found to be appropriate for the efficient PSC design. For the initial guessing and numerical model validation, the photovoltaic data of a very stable (over one year with PCE ~13%) n-i-p structured (ITO/TiO2/CH3NH3Pb(I1-xBrx)3/Spiro-OMeTAD/Au) PSCs was used. These numerically simulated results signify the optimum performance of the photovoltaic device that can be further implemented to develop the highly efficient PSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.