Abstract

The performance of an automotive air-conditioning (AAC) system is influenced by a variety of operating conditions. This can be addressed by employing optimization techniques that can suggest the appropriate parameters for the best results. In this study, the optimum operating conditions for a composite nanolubricants-fuelled AAC system were investigate using Taguchi's design of experiment approach and analysis of variance (ANOVA). The motor speed value, initial refrigerant charge, and composite nanolubricants composition ratio were chosen as operating parameters to investigate the AAC system performance, focusing on the coefficient of performance (COP) and compressor work. Orthogonal arrays (ORs) L25 (56) was selected to determine the optimum operating parameters of the AAC system. The optimum values for speed, refrigerant mass, and composition ratio were determined to be A4B1C5 (60:40, 900 rpm and 155 g), respectively. The motor speed was the significant factor influencing both COP and compressor performance by 78.13% and 89.29%. A confirmation test was conducted with the optimum levels of AAC system parameters to verify the efficiency of the Taguchi optimization method. The validation between the optimization results and the experimental results yielded a maximum error of 9.85%, indicating that the findings of this investigation were acceptable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.