Abstract

AbstractThermoelectric (TE) effects as a coupling between heat and charge transfer can be described on a classical level in the framework of the Onsager theory. Under isotropic and steady state conditions the conservation equations can be combined to obtain a thermal energy balance containing the temperature distribution as target function. Besides the temperature the balance equation contains material properties represented by the Seebeck coefficient S, the electrical and thermal conductivities σ and κ, respectively. For the sake of simplicity, a 1D scheme has been chosen for the analytical and numerical treatment. Performance investigations are often done within the framework of the Constant Properties Model (CPM) or based on temperature dependent material properties. In the 1D steady state, there is an alternative approach available based on spatial material profiles. Following the approach by Müller and co-workers, the temperature profile T(x) is calculated numerically within a model-free setup directly from the 1D thermal energy balance, e.g., based on continuous monotonous gradient functions for all material profiles, and independent and free variability of the material parameters S(x), σ(x), and κ(x) is assumed initially. Doing so, the optimum electrical current density can be determined from the maximum of the global performance parameter (power output P or efficiency η). We present analytical results for the performance optimization calculating P and η with linear material profiles for S(x), a constant electrical and thermal conductivity, fixed TE element length L and fixed boundary temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.