Abstract

The growing demand for high-performance data processing stimulates the development of in-memory file systems, which exploit the advanced features of emerging non-volatile memory techniques for achieving high-speed file accesses. Existing in-memory file systems, however, are all designed for the systems with uniformed memory accesses. Their performance is poor on Non-Uniform Memory Access (NUMA) machines as they do not consider the asymmetric memory access speed and the architecture of multiple nodes. In this paper, we propose a new design of NUMA-aware in-memory file systems. We propose a distributed file system layout for leveraging the loads of in-memory file accesses on different nodes, a thread-file binding algorithm and a buffer assignment technique for increasing local memory accesses during run-time. Based on the proposed techniques, we implement a functional NUMA-aware in-memory file system, HydraFS, in Linux kernel. Extensive experiments are conducted with the standard benchmark. The experimental results show that HydraFS significantly outperforms typical existing in-memory file systems, including EXT4-DAX, PMFS, and SIMFS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.