Abstract

Multicomponent materials are microwave-absorbing (MA) materials composed of a variety of absorbents that are capable of reaching the property inaccessible for a single component. Discovering mostly valuable properties, however, often relies on semi-experience, as conventional multicomponent MA materials' design rules alone often fail in high-dimensional design spaces. Therefore, we propose performance optimization engineering to accelerate the design of multicomponent MA materials with desired performance in a practically infinite design space based on very sparse data. Our approach works as a closed-loop, integrating machine learning with the expanded Maxwell-Garnett model, electromagnetic calculations, and experimental feedback; aiming at different desired performances, Ni surface@carbon fiber (NiF) materials and NiF-based multicomponent (NMC) materials with target MA performance were screened and identified out of nearly infinite possible designs. The designed NiF and NMC fulfilled the requirements for the X- and Ku-bands at thicknesses of only 2.0 and 1.78 mm, respectively. In addition, the targets regarding S, C, and all bands (2.0-18.0 GHz) were also achieved as expected. This performance optimization engineering opens up a unique and effective way to design microwave-absorbing materials for practical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.