Abstract

The challenging issues of cancer prevention and cure lie in the need for a more detailed knowledge of the dynamic processes and mechanisms of cellular behaviour and tumour growth dynamics. In this paper we extend a previous 2D parallel implementation of a continuous-discrete model of tumour-induced angiogenesis to the more realistic 3D case. In particular, we look in-depth at available performance optimisation techniques to further improve the computational method and explore in more detail the hardware architecture. Recent evidence clearly indicates that GPU-accelerated computing can greatly facilitate researchers, clinicians and oncologists by performing time-saving <i>in-silico</i> experiments that have the potential to assist in quantifying cellular parameters, highlight model features, and help explore new cancer treatments and therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.