Abstract
Information is lacking on the potential of leguminous fodder trees such as Leucaena leucocephala as a feed resource to supplement the native forages in traditional grazing management systems in the tropics. Two studies were conducted (1) to assess traditional fodder banks’ forage nutritive potential on animal production, and (2) to investigate the effect of Leucaena leucocephala leaf meal (LLM) supplementation on growth of steers grazing standing hay basal forages in the dry season. The traditional forages had low nutritive values indicated by low mean crude protein (CP) of 23 g kg−1 dry matter (DM), and high fibre contents of 717, 546 and 153 g kg−1 DM for neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL), respectively. The forages were poorly degraded in sacco and had low metabolisable energy (ME) (4.2–4.6 MJ kg−1 DM). Mean washing losses A, slowly degradable DM fraction, B, potential degradability, (A+B) and mean 48 h DM degradability (DMD) of grazing land forages were 70, 471, 541 and 326 g kg−1 DM, respectively. In the supplementation study, 16 growing steers (160.8±0.24 kg) were randomly allocated into four groups, in a completely randomized design. Four LLM treatment diets (T1, T2, T3 and T4), with four levels: 0, 0.4, 0.6 and 0.8 kg DM for control, low, medium and high LLM levels, respectively, were randomly allocated to the animals in the four groups for 70 days (d). LLM supplementation (p 0.05) difference in weight gains between animals on T3 and T4 (0.14 vs. 0.26 kg steer−1 d−1, respectively). Standing hay basal forages alone could not sustain animal productivity during dry seasons unless corrected for protein. Higher levels of LLM supplementation prevented weight losses and improved the performance of grazing steers, a management practice thought appropriate to low income pastoralists in semiarid western Tanzania.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.