Abstract

Use of thin metal wire structures as a new type of extended heat transfer surface is proposed. As one of the most basic shapes of such wire structures, heat transfer performance of spring shaped fins is experimentally investigated under relatively low Reynolds number conditions. The averaged heat transfer coefficient is evaluated by a single-blow method while the pressure drop is measured at a steady state flow condition. The effects of the geometric parameters such as the wire diameter, the spring pitch and the pitch ratio were systematically examined and the obtained data were compared with that of a conventional offset fin, which is commercially available. It was found that the geometric parameters of the spring fins and the arrangement of spring fins in the test section affect their heat transfer performance. Some types of spring fins showed better heat transfer performance than a conventional offset fin, when they are evaluated in terms of the total heat transfer at a constant pumping power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.