Abstract
Full-surface fire on fuel storage tank emits high radiation heat transfer. As a fire protection strategy, the water curtain cooling system is activated to reduce the temperature on the adjacent tank surface. Therefore, the present work predicts and analyses the radiation heat flux and the maximum flame temperature of different types of fuels. Further, this analyses the effect of fuel total mass on radiation heat flux and maximum flame temperature and observes the effect of distance between two tanks on radiation heat flux distribution. The relationship between water cooling flow rate and outlet water temperature that absorbed radiation heat flux has been studied. The study has been conducted by using the Consequence modeling software trial version. The modeling setup of the tank is 17 m in height with 65 m inner diameter, and the meteorological data used are 5.4 m/s wind speed with north wind direction at atmospheric pressure in order to imitate the worst-case fire scenario. The results reveal that the gasoline fuel emitted the highest heat flux value of 11.03 kW/m2 and the raw gasoline sample emits the lowest heat flux value of 9.14 kW/m2. Furthermore, the total mass of the fuel shows no effect on the maximum flame temperature of 958.51°C. According to the findings, the critical tank distancing is 36 m and thus the appropriate tank distancing of 40 m is highly recommended by the standard. The result shows that the water cooling rate of 4.1 lpm/m2 is an excellent practice of water cooling to cool down the temperature of the fuel tank which is exposed to radiation heat flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.