Abstract

The performance of vibrational structure calculations beyond harmonic approximation in the framework of the vibrational self-consistent field method with second-order perturbation corrections (VSCF-PT2) is investigated in conjunction with very accurate potential energy surfaces (PESs) given by various coupled-cluster electronic structure theories. The quality of anharmonic calculations depends on the accuracy of the underlying multidimensional PES obtained from its functional form, which is given by the level of electronic structure theory. Two such highest levels of typical coupled-cluster electronic structure methods, CCSD and the ″gold standard″ CCSD(T), along with their variants such as CCD, CR-CCL (completely renormalized CR-CC(2,3) approach), and CCSD(TQ) are tested for the construction of accurate anharmonic potentials without any fitting or ad hoc scaling and using cc-pVTZ basis sets. The accuracy of VSCF-PT2 theory in comparison to experimental values is tested for a series of 16 molecules with 135 fundamental bands, 64 overtones, and combination bands and also for 39 intensities. It is found that CCD and CCSD bind the potential tighter than CCSD(T) and the computed VSCF-PT2 transitions are more blue-shifted showing higher deviation from the experiment. In general, VSCF-PT2 results computed at the CCSD(T) potential offer a good cost/accuracy ratio, with the mean absolute deviation and the mean absolute percentage error with the experiment being ∼16 cm-1 and 1.38, respectively, for fundamentals. Additionally, while the CR-CCL and CCSD(TQ) methods offer similar levels of accuracies as compared to CCSD(T), the former offers a better accuracy/cost ratio than the latter and is a suitable alternative to CCSD(T).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.