Abstract

This paper deals with the analysis of active constrained layer damping (ACLD) of laminated cylindrical composite shells using vertically and obliquely reinforced 1–3 piezoelectric composite materials as the material of the constraining layer of the ACLD treatment. A finite element model has been developed for analyzing the ACLD of laminated symmetric and antisymmetric cross-ply and angle-ply composite shells integrated with the patches of such ACLD treatment. Both in-plane and out-of-plane actuation of the constraining layer of the ACLD treatment has been utilized for deriving the finite element model. The analysis revealed that the vertical actuation dominates over the in-plane actuation. Particular emphasis has been placed on investigating the performance of the patches when the orientation angle of the piezoelectric fibers of the constraining layer is varied in the two mutually orthogonal vertical planes. The analysis revealed that the vertically reinforced 1–3 piezoelectric composites which are in general being used for the distributed sensors can be potentially used for the distributed actuators of high-performance light-weight smart cylindrical shells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.