Abstract

The performance analysis of multi-input-multi-output (MIMO) systems with M-ary quadrature amplitude modulation (MQAM) and a space-time block code (STBC) over flat Rayleigh fading channels for imperfect channel state information (CSI) is presented. In this paper, the optimum fading gain switching thresholds for attaining maximum spectrum efficiency (SE) subject to a target bit-error rate (BER) and an average power constraint are derived. It is shown that the Lagrange multiplier in the constrained SE optimization does exist and is unique for imperfect CSI and for single-input-single-output (SISO) systems under perfect CSI. On the other hand, the Lagrange multiplier will be unique if the existence condition for MIMO under perfect CSI is satisfied. Numerical evaluation shows that the variable-power (VP) adaptive modulation (AM) with STBC provides better SE than its constant-power (CP) counterpart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call