Abstract

Futility of traditional advanced oxidation processes (AOPs) in saline wastewater treatment has stimulated the quest for novel “halotolerant” chemical oxidation technology. Acetylacetone (AA) has proven to be a potent photo-activator in the degradation of dyes, but the applicability of UV/AA for saline wastewater treatment needs to be verified. In this study, degradation of crystal violet (CV) was investigated in the UV/AA system in the presence of various concentrations of exogenic Cl- or Br-. The results reveal that degradation, mineralization and even accumulation of adsorbable organic halides (AOX) were not significantly affected by the addition of Cl- or Br-. Rates of CV degradation were enhanced by elevating either AA dosage or solution acidity. An apparent kinetic rate equation was developed as r = -d[CV]/dt = k[CV]a[AA]b = (7.34 × 10-4 mM1-(a+b) min-1) × [CV]a=0.16 [AA]b=0.97. In terms of results of radical quenching experiments, direct electron/energy transfer is considered as the major reaction mechanism, while either singlet oxygen or triplet state (3(AA)*) might be involved. Based on identification of degradation byproducts, a possible degradation pathway of CV in the UV/AA system is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call