Abstract

In this letter, performance of a multiantenna multiuser unmanned aerial vehicle (UAV)-assisted terrestrial-satellite communication system over mixed free space optics (FSO)/radiofrequency (RF) channels is analyzed. Downlink transmission from the satellite to the UAV is completed through FSO link which follows gamma–gamma distribution with pointing error impairments. Both the heterodyne detection and intensity modulation direct detection techniques are considered at the FSO receiver. To avail the antenna diversity, multiple transmit antennas are considered at the UAV. Selective decode-and-forward scheme is assumed at the UAV and opportunistic user scheduling is performed while considering the practical constraints of outdated channel state information (CSI) during the user selection and transmission phase. The RF links are assumed to follow Nakagami-m distribution due to its versatile nature. In this context, for the performance analysis, analytical expressions of outage probability, asymptotic outage probability, ergodic capacity, effective capacity, and generalized average symbol-error-rate expressions of various quadrature amplitude modulation (QAM) schemes such as hexagonal-QAM, cross-QAM, and rectangular QAM are derived. A comparison of various modulation schemes is presented. Further, the impact of pointing error, number of antennas, delay constraint, fading severity, and imperfect CSI are highlighted on the system performance. Finally, all the analytical results are verified through the Monte–Carlo simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call