Abstract

A finite element model is developed to study the behaviour of unstiffened steel plate walls. The model includes both material and geometric nonlinearities and strain rate effects. The model is first validated using the results from quasistatic and dynamic experimental programs. The validated finite element model is then used to study the performance of four storey and eight storey steel plate walls with moment-resisting beam-to-column connections under spectrum compatible seismic records for Vancouver and Montreal. Two different steel plate wall types defined in the current Canadian standard CAN/CSA-S16–01 are considered, namely, Type D (ductile) and Type LD (limited-ductility) plate walls. All the Type D walls, designed according to the capacity design provisions, exhibit better inelastic seismic responses than the Type LD plate walls. The analyses of eight storey steel plate walls show that in high seismic regions, such as Vancouver, medium- to high-rise Type LD plate walls may exhibit yielding in columns in intermediate floors. The study also shows that in more moderate seismic regions, like Montreal, Type LD plate walls behave in a stable and ductile manner and can be used for low- to medium-rise buildings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.