Abstract

The present investigation presents a comparative study between two-phase flow models and experimental data. Experimental data was obtained using a 42 m long, 0.05 m ID tube system. The experimental data include conditions for pressures ranging from 1.2 to 2.8 bara, superficial liquid velocities 0.02–0.3 m/s, and superficial gas velocity ranges 0.17–26 m/s. The experimental data was used to evaluate the performance of steady-state empirical and mechanistic models while estimating liquid holdup and pressure gradient under steady-state and oscillatory conditions. The purpose of this analysis is first to evaluate the accuracy of the models predicting the liquid holdup and pressure gradient under steady-state conditions. Then, after evaluating the models under state-steady conditions, the same models are used to predict the same parameters for oscillatory and periodic conditions for similar gas and liquid velocities. The transient multiphase flow simulator OLGA, which has been widely used in the oil and gas industry, was implemented to model one oscillatory case to evaluate the prediction improvement while using a transient instead of a steady-state model to predict oscillatory flows. For the model with best performance for steady-state pressure gradient prediction, the absolute percentage error is 12% for Uls = 0.02 m/s and 5% for Uls = 0.3. For oscillatory conditions, the absolute percentage error is 30% for Uls = 0.02 m/s and 4% for Uls = 0.3. OLGA results underpredict the experimental pressure gradient under oscillatory conditions with errors up to 30%. Therefore, it was possible to conclude that the models can predict the average of the oscillatory data almost as well as for steady-state conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.