Abstract

For the various climatic zones of India, machine learning (ML) models are created in the current work to forecast monthly-average diffuse solar radiation (DSR). The long-term solar radiation data are taken from Indian Meteorological Department (IMD), Pune, provided for 21 cities that span all of India’s climatic zones. The diffusion coefficient and diffuse fraction are the two groups of ML models with dual input parameters (sunshine ratio and clearness index) that are built and compared (each category has seven models). To create ML models, two well-known ML techniques, random forest (RF) and k-nearest neighbours (KNN), are used. The proposed ML models are compared with well-known models that are found in the literature. The ML models are ranked according to their overall and within predictive power using the Global Performance Indicator (GPI). It is discovered that KNN models generally outperform RF models. The results reveal that in diffusion coefficient models perform well than diffuse fraction models. Moreover, functional form 2 is the best followed by form 6. The ML models created here can be effectively used to accurately forecast DSR in various climates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.