Abstract

AbstractThe performance of two real-life California bridges is assessed under a possible regional multihazard condition involving floods and earthquakes. For flood events with varied frequency, expected scour depths at bridge piers are calculated and incorporated in finite-element analyses (FEAs) of the bridges under earthquakes that represent regional seismic hazards. Based on FEA results, fragility curves of bridges are developed at component and system levels. Fragility surfaces are generated to acquire comprehensive knowledge on bridge failure probability for the combined effect of earthquake and flood events of varying frequency. Quantified bridge vulnerability is applied to a risk evaluation framework that combines hazard probability with bridge failure consequences. Obtained results depict that the occurrence of flood events can increase the seismic vulnerability and risk of bridges, although the amount of increase depends on bridge attributes. Bigger (large-diameter) foundations tend to reduce the...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.