Abstract

We present a method to analyze electrical and optical characteristics of traveling-wave electroabsorption modulators (TW-EAMs) using the finite-difference time-domain method. We consider the interaction between electromagnetic fields and optical powers in waveguides in time domain to model electrical and optical behaviors of TW-EAMs. The effects of microwave properties of waveguides on modulation response and output optical power of TW-EAMs are analyzed by the proposed method. The characteristic impedance of TW-EAMs is more important than microwave index to obtain large modulation bandwidth of TW-EAMs when impedance matching techniques are not used. However, effective refractive index match between microwave and lightwave becomes important as the waveguide length increases. The microwave property closely related to the extinction ratio of output optical powers is the microwave loss. When impedance match is achieved by low-impedance termination, the velocity matching between microwave and lightwave becomes important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.