Abstract

Hydrogen sulfide (H2S) is a major malodorous compound emitted from wastewater treatment plants. In this study, the performance of three pilot-scale immobilized-cell biotrickling filters (BTFs) spacked with combinations of bamboo charcoal and ceramsite in different ratios was investigated in terms of H2S removal. Extensive tests were performed to determine the removal characteristics, pressure drops, metabolic products, and removal kinetics of the BTFs. The BTFs were operated in continuous mode at low loading rates varying from 0.59 to 5.00g H2Sm−3h−1 with an empty bed retention time (EBRT) of 25s. The removal efficiency (RE) for each BTF was >99% in the steady-state period, and high standards were met for the exhaust gas. It was found that a multilayer BTF had a slight advantage over a perfectly mixed BTF for the removal of H2S. Furthermore, an impressive amount >97% of the H2S was eliminated by 10% of packing materials near the inlet of the BTF. The modified Michaelis–Menten equation was adopted to describe the characteristics of the BTF, and Ks and Vm values for the BTF with pure bamboo charcoal packing material were 3.68ppmv and 4.26g H2Sm−3h−1, respectively. Both bamboo charcoal and ceramsite demonstrated good performance as packing materials in BTFs for the removal of H2S, and the results of this study could serve as a guide for further design and operation of industrial-scale systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call