Abstract

As a leading technology of heat storage, thermochemical adsorption heat storage has become a hot research direction in the world because of its high heat storage density, which can realize cross season heat storage and combined cold and heat storage. In this study, a thermochemical adsorption heat storage system with MnCl2-NH3 as working pair is constructed. MnCl2@expanded graphite composite adsorbent has been prepared by adding expanded graphite (EG) to suppress the expansion and agglomeration of chemical salts, and 3.78 kg MnCl2@EG are filled in the chemical reactor. The heat storage performance of the MnCl2-NH3 thermochemical adsorption heat storage system is experimentally tested. The optimal heat storage performance was obtained when the charging, discharging and condensation/evaporation temperature is 174 °C, 50 °C and 20 °C, respectively. The corresponding total heat storage density is 3211.56 kJ/kg MnCl2 (or 2729.82 kJ/kg consolidated composite material) with the total heat storage efficiency 0.939. The experimental results revealed that MnCl2@EG composite exhibits the superior heat storage performance and could be a promising thermochemical adsorption heat storage material. The thermochemical adsorption heat storage could be used for harvesting the solar thermal energy in large scale and recovering the industrial waste heat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call