Abstract

We have carried out a three-dimensional numerical study to investigate the radiative heat transfer in a model gas turbine combustor. The combustion chamber is a representative of the Rolls-Royce Tay engine combustor. The discrete ordinate method (Sn) in general body-fitted coordinate system is developed and then applied to solve the filtered radiative transfer equation for the radiation modeling, and this has been combined with a large eddy simulation of the flow, temperature, and composition fields within the combustion chamber. Various approximations of Sn have been considered and their performances in the investigation of the radiative heat transfer are presented in the paper. The radiation considered in this work is due only to the hot combustion gases, notably carbon dioxide (CO2) and water vapor (H2O) also known as nonluminous radiation. The instantaneous results of the radiation properties such as the incident radiation and the radiative energy source or sink as the divergence of the radiative heat fluxes are computed inside the combustion chamber and presented graphically. Effects of the wall emissivity on the incident radiation inside the combustion chamber have been examined, and it has been found that the radiative energy is enhanced with the increment of the wall emissivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.