Abstract
Noncoherent detection over Rayleigh fading diversity channels with known or perfectly estimated amplitudes is studied for binary, uniformly orthogonal signaling. The optimum receiver is well known, but is too difficult to implement. Hence, two suboptimal receivers are considered: the receiver, optimum at low signal-to-noise ratios (SNR's), and the bilinear receiver (optimum at high SNR's) which is also a generalized likelihood ratio test (GLRT) receiver for this case. We analyze the performances of the two suboptimal receivers over two-path channels and compare them to the basic quadratic receiver. For this purpose we present a general method for computing the error probability that can be applied to any dual-diversity binary detection problem whenever the method of characteristic functions fails. We present the exact analytical expressions for the biquadratic receiver, and the numerically computed results for the GLRT receiver, in terms of the conditional, average and asymptotic error probabilities. It is shown that the two receivers are rather close in performance in most of the SNR ranges of interest. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.