Abstract
Marginal structural models (MSMs) have been proposed for estimating a treatment's effect, in the presence of time-dependent confounding. We aimed to evaluate the performance of the Cox MSM in the presence of missing data and to explore methods to adjust for missingness. We simulated data with a continuous time-dependent confounder and a binary treatment. We explored two classes of missing data: (i) missed visits, which resemble clinical cohort studies; (ii) missing confounder's values, which correspond to interval cohort studies. Missing data were generated under various mechanisms. In the first class, the source of the bias was the extreme treatment weights. Truncation or normalization improved estimation. Therefore, particular attention must be paid to the distribution of weights, and truncation or normalization should be applied if extreme weights are noticed. In the second case, bias was due to the misspecification of the treatment model. Last observation carried forward (LOCF), multiple imputation (MI), and inverse probability of missingness weighting (IPMW) were used to correct for the missingness. We found that alternatives, especially the IPMW method, perform better than the classic LOCF method. Nevertheless, in situations with high marker's variance and rarely recorded measurements none of the examined method adequately corrected the bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.