Abstract

The Harris functional is a noniterative variational procedure that uses an input charge density to produce an energy that is surprisingly accurate compared to the converged Kohn-Sham self-consistent result. We adapted and generalized this functional for the Hartree-Fock closed- and open-shell cases as well as examined its use for hybrid density functional methods such as B3LYP. Analysis of extended basis set calculations shows that at the B3LYP level an input density formed from a double zeta + polarization orbital basis is accurate enough to reproduce the energy of triple zeta + double polarization + diffuse orbital basis. For large molecules this translates into a computational speed that can be an order of magnitude faster. In the case of Hartree-Fock calculations a "bootstrapping technique" that employs successive applications of the Harris functional can further reduce computational times while retaining sufficient accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.