Abstract

We investigate the secure connectivity of wireless sensor networks under the random key distribution scheme of Eschenauer and Gligor. Unlike recent work which was carried out under the assumption of full visibility, here we assume a (simplified) communication model where unreliable wireless links are represented as on/off channels. We present conditions on how to scale the model parameters so that the network i) has no secure node which is isolated and ii) is securely connected, both with high probability when the number of sensor nodes becomes large. The results are given in the form of full zero-one laws, and constitute the first complete analysis of the EG scheme under non-full visibility. Through simulations these zero-one laws are shown to be valid also under a more realistic communication model, i.e., the disk model. The relations to the Gupta and Kumar's conjecture on the connectivity of geometric random graphs with randomly deleted edges are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.