Abstract

When the unbiased estimators of a set of parameters are independently and normally distributed, the Empirical Bayes Estimator (EB) for each of the parameters depends on all the parameters. When these parameters are considered to be fixed, Rao and Shinozaki (1978) [7] compared the mean square error (MSE) of this estimator for an individual parameter with the variance of its unbiased estimator, and cautioned that its bias may be large. In this article, the conditions required for (a) the MSE of the EB to be smaller than the variance of the unbiased estimator and (b) at the same time, for its bias to be smaller than a specified fraction of the square root of the MSE are evaluated. To satisfy these conditions, critical limits for the difference of the parameter from the average of all the parameters and the sum of such differences over all the parameters are determined. As an illustration, for the daily inpatient hospital expenses in the Metropolitan Statistical Areas (MSAs) of 15 states in the US, the sample means and EBs are compared through the estimates of these limits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.