Abstract

Subtractive manufacturing has become the dominant method in fabricating zirconia dental restorations while additive manufacturing is emerging as a potential alternative. The aim of this in vitro study was to investigate the performance of stereolithography (SLA) and milling in fabricating monolithic zirconia crowns with different finish line designs. Full-contour crowns with three finish lines (chamfer, rounded shoulder, knife-edge) were designed and fabricated by SLA and milling. Fabrication accuracy was accessed by 3D deviation analysis and margin quality was characterized under microscopes. The obtained root mean square value was significantly influenced by finish line design (P < 0.05) but not by fabrication method (P>0.05). However, the color-difference map showed crowns fabricated by SLA and milling had different error distribution in external surfaces. SLA-printed crowns exhibited margins of rounded line angle and without small flaws, although large chippings were found in knife-edged crowns. In milling group, crowns showed margins of sharp line angle and with separate chippings. More and larger margin chippings were found in knife-edged crowns by milling. The results indicate that SLA and milling can fabricate monolithic zirconia crowns of comparable accuracy and knife-edged crowns are prone to large margin chippings by either of the two manufacturing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.