Abstract

A component or structure, which is designed to carry a single monotonically increasing application of static load, may fracture and fail if the same load or even smaller load is applied cyclically a large number of times. For example a thin rod bent back and forth beyond yielding fails after a few cycles of such repeated bending. The fatigue failure is due to progressive propagation of flaws in steel under cyclic loading. This is partially enhanced by the stress concentration at the tip of such flaw or crack. The presence of a hole in a plate or simply the presence of a notch in the plate has created stress concentrations at the center points. These stress concentrations may occur in the material due to some discontinuities in the material itself. At the time of static failure, the average stress across the entire cross section would be the yield stress. However when the load is repeatedly applied or the load fluctuates between tension and compression, the center points experience a higher range of stress reversal than the applied average stress. These fluctuations involving higher stress ranges, cause minute cracks at these points, which open up progressively and spread with each application of the cyclic load and ultimately lead to rupture. Fatigue failure can be defined as the number of cycles and hence time taken to reach a pre-defined or a threshold failure criterion. Low cycle fatigue could be classified as the failures occurring in few cycles to a few tens of thousands of cycles, normally under high stress/ strain ranges. High cycle fatigue requires about several millions of cycles to initiate a failure. The type of cyclic stresses applied on structural systems and the terminologies used in fatigue resistant design are illustrated in this paper. The common form of presentation of fatigue data is by using the S-N curve, where the total cyclic stress (S) is plotted against the number of cycles to failure (N) in logarithmic scale. The point at which the S-N curve flattens off is called the endurance limit. To carry out fatigue life predictions, a linear fatigue damage model is used in conjunction with the relevant S-N curve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.