Abstract

A model is developed for predicting the performance of spur gears with provision for surface roughness. For each point along the line of action, the contact of pinion and gear is replaced by that of two cylinders. The radii of cylinders, transmitted load, and contact stress are calculated, and lubricant film thickness is obtained using the load-sharing concept of Johnson et al. (1972, “A Simple Theory of Asperity Contact in Elastohydrodynamic Lubrication,” Wear, 19, pp. 91–108) To validate the analysis, the predicted film thickness and the friction coefficient are compared to published theoretical and experimental data. The model is capable of predicting the performance of gears with non-Newtonian lubricants—such as that of shear thinning lubricants—often used in gears. For this purpose, a correction factor for shear thinning film thickness introduced by Bair (2005, “Shear Thinning Correction for Rolling/Sliding Electrohydrodynamic Film Thickness,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 219, pp. 1–6) has been employed. The results of a series of simulations presenting the effect of surface roughness on the friction coefficient are presented and discussed. The results help to establish the lubrication regime along the line of action of spur gears.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.