Abstract

ceramics were synthesized and their ionic conduction was investigated. These ceramics showed protonic and oxide ionic mixed conduction under fuel cell condition. While protonic conduction was predominant below 1027 K, oxide ionic conduction became significant as the temperature increased. Using these oxides as solid electrolyte, hydrogen‐air fuel cell could be constructed. exhibited the best cell performance among the electrolytes examined. The maximum short‐circuit current density was about 900 mA/cm2 at 1273 K. The polarization at each electrode was low. Porous nickel could be used as anode material instead of expensive platinum and as cathode material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.