Abstract
The unconstrained binary quadratic programming problem (BQP) is known to be NP-hard and has many practical applications. This paper presents a simulated annealing (SA)-based heuristic for the BQP. The new SA heuristic for the BQP is based on a simple (1-opt) local search heuristic and designed with a simple cooling schedule, but the multiple annealing processes are adopted. To show practical performances of the SA, we test on publicly available benchmark instances of large size ranging from 500 to 2500 variables and compare them with other heuristics such as multi-start local search, the previous SA, tabu search, and genetic algorithm incorporating the 1-opt local search. Computational results indicate that our SA leads to high-quality solutions with short times and is more effective than the competitors particularly for the largest benchmark set. Furthermore, the values of new best-known solutions found by the SA for several large instances are also reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.