Abstract
I evaluated the predictive ability of statistical models obtained by applying seven methods of variable selection to 12 ecological and environmental data sets. Cross-validation, involving repeated splits of each data set into training and validation subsets, was used to obtain honest estimates of predictive ability that could be fairly compared among methods. There was surprisingly little difference in predictive ability among five methods based on multiple linear regression. Stepwise methods performed similarly to exhaustive algorithms for subset selection, and the choice of criterion for comparing models (Akaike's information criterion, Schwarz's Bayesian information criterion or F statistics) had little effect on predictive ability. For most of the data sets, two methods based on regression trees yielded models with substantially lower predictive ability. I argue that there is no 'best' method of variable selection and that any of the regression-based approaches discussed here is capable of yielding useful predictive models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.