Abstract

In this study, a numerical study based on Euler equations and coupled with detail chemistry model is used to improve the propulsion performance and stability of the rotating detonation engine. The proposed fuel injection called stratified injection functions by suppressing the isobaric combustion process occurring on the contact surface between fuel and detonation products, and thus the proportion of fuel consumed by detonation wave increases from 67% to 95%, leading to more self-pressure gain and lower entropy generation. A pre-mixed hydrogen-oxygen-nitrogen mixture is used as a reactive mixture. The computational results show that the propulsion performance and the operation stability of the engine with stratified injection are both improved, the temperature of the flow field is notably decreased, the specific impulse of the engine is improved by 16.3%, and the average temperature of the engine with stratified injection is reduced by 19.1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.