Abstract

Nuclear shieldings and chemical shifts of 5-fluorocytosine (5FC) were predicted in the gas phase and DMSO solution modeled by polarizable continuum model using B3LYP density functional and revised STO(1M)-3G basis set. For comparison, eight arbitrary selected basis sets including STO-3G and medium-size Pople-type and larger dedicated Jensen-type ones were applied. The former basis sets were significantly smaller, but the calculated structural parameters, harmonic vibrational frequencies, were very accurate and close to those obtained with larger, polarization-consistent ones. The predicted 13 C and 1 H chemical shieldings of 5FC and cytosine, selected as parent molecule, were acceptable (root mean square for 13 C chemical shifts in DMSO of about 5ppm and less) though less accurate than those calculated with large basis sets, dedicated for prediction of nuclear magnetic resonance parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call