Abstract

Despite the impressive results achieved by microcalorimeters and bolometers, their performance is still significantly worse than that predicted by Mather's ideal model (Appl. Opt. 21 (1982) 1125). The difference is due both to non-ideal effects and to excess noise of unknown origin. The non-ideal effects have been recently quantified and include hot-electron effect, absorber decoupling, thermometer non-ohmic behavior, and all related extra noise sources. The excess noise affects primarily Transition Edge Sensors (TES) and is currently under experimental and theoretical investigation. This paper reviews the origin of non-ideal effects in microcalorimeters and bolometers and their effect on energy resolution and noise equivalent power. It also reviews the results on the characterization and suppression of the excess noise in TES, and the recent theoretical investigations to explain its origin in relation to fundamental physics in superconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.