Abstract

In recent years, quantum inspired neural networks have been applied to various practical problems since their proposal. Here we investigate whether our qubit neural network(QNN) leads to an advantage over the conventional (real-valued) neural network(NN) in the forecasting of chaotic time series. QNN is constructed from a set of qubit neuron, of which internal state is a coherent superposition of qubit states. In this paper, we evaluate the performance of QNN through a prediction of well-known Lorentz attractor, which produces chaotic time series by three dynamical systems. The experimental results show that QNN can forecast time series more precisely, compared with the conventional NN. In addition, we found that QNN outperforms the conventional NN by reconstructing the trajectories of Lorentz attractor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call