Abstract
In the literature the performance of quantum data transmission systems is usually evaluated in the absence of thermal noise. A more realistic approach taking into account the thermal noise is intrinsically more difficult because it requires dealing with Glauber coherent states in an infinite-dimensional space. In particular, the exact evaluation of the optimal measurement operators is a very difficult task, and numerical approximation is unavoidable. The paper faces the problem by approximating the P-representation of the noisy quantum states with a large but finite numbers of terms and applying to them the square root measurement (SRM) approach. Comparisons with cases where the exact solution are known show that the SRM approach gives quite accurate results. As application, the performance of quadrature amplitude modulation (QAM) and phase shift keying (PSK) systems is considered. In spite of the fact that the SRM approach is not optimal and overestimates the error probability, also in these cases the quantum detection maintains its superiority with respect to the classical homodyne detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.