Abstract

PurposeGenome-wide association studies have identified hundreds of single nucleotide variations (formerly single nucleotide polymorphisms) associated with several cancers, but the predictive ability of polygenic risk scores (PRSs) is unclear, especially among non-Whites. MethodsPRSs were derived from genome-wide significant single-nucleotide variations for 15 cancers in 20,079 individuals in an academic biobank. We evaluated the improvement in discriminatory accuracy by including cancer-specific PRS in patients of genetically-determined African and European ancestry. ResultsAmong the individuals of European genetic ancestry, PRSs for breast, colon, melanoma, and prostate were significantly associated with their respective cancers. Among the individuals of African genetic ancestry, PRSs for breast, colon, prostate, and thyroid were significantly associated with their respective cancers. The area under the curve of the model consisting of age, sex, and principal components was 0.621 to 0.710, and it increased by 1% to 4% with the inclusion of PRS in individuals of European genetic ancestry. In individuals of African genetic ancestry, area under the curve was overall higher in the model without the PRS (0.723-0.810) but increased by <1% with the inclusion of PRS for most cancers. ConclusionPRS moderately increased the ability to discriminate the cancer status in individuals of European but not African ancestry. Further large-scale studies are needed to identify ancestry-specific genetic factors in non-White populations to incorporate PRS into cancer risk assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call