Abstract

A recent epidemiological study reported significant cognitive deficits among children in relation with consumption of water with manganese concentrations in the order of 50–100 ug/L. Concerns for neurotoxic effects of manganese raises the need for evaluating the efficiency of domestic water treatment systems for removal of this metal. The objective of the present study was to determine whether POU devices are efficient at reducing dissolved manganese concentration in drinking water. Various devices were tested according to the NSF 53 protocol for general metals for high pH test water. Based on these assays, the pour-through filters were identified as the most promising POU devices, with dissolved manganese removal greater than 60% at 100% rated capacity, and greater than 45% at 200% rated capacity (influent Mn ≈1,000 μg/L). Under-the-sink filters using cationic exchange resins (i.e., water softeners) were also efficient at removing dissolved manganese but over a shorter operating life. Manganese leaching was also observed beyond their rated capacity, making them less robust treatments. The activated carbon block filters and other proprietary technologies were found to be inappropriate for dissolved manganese removal. Further evaluation of POU devices performance should evaluate the impact of hardness on process performance. The impact of particulate Mn should also be evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call