Abstract
AbstractThe use of ground-mounted photovoltaic (GMPV) systems for power generation is becoming popular these days. The GMPV systems demand vast land areas for their installations, and this has resulted in land-use conflicts. As a result, for mitigating the land-use issues, few novel ways of photovoltaic (PV) installations have emerged that include floating photovoltaic (FPV) and submerged photovoltaics (SPV). However, in literature, many have raised concerns over the FPV and SPV performance. In this paper, an experimental study is carried out to understand the performance of GMPV, FPV, and SPV systems. Three different prototypes of PV systems with data collection units in GMPV, FPV, and SPV installation methods are designed. An outdoor experimental study is carried at the same time, and performance assessment is carried out. Results observed from this study include weather parameters and electrical parameters. The analysis shows that FPV produces higher energy outputs when compared to the GMPV and SPV systems. From this investigation, we recommend the use of PV installation in FPV mode for solar power generation. The large-scale deployment of and the promotion of FPV systems would overcome the land-use conflicts between solar power and agriculture sectors. Also, the enhanced power outputs from FPV can help in overcoming the growing energy crisis.KeywordsPhotovoltaicsPV installationPower conversion efficiencyPV performanceFloating solarSubmerged PVGround-mounted PV
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.