Abstract

Quantum key distribution (QKD) generates information-theoretical secure keys between two parties based on the physical laws of quantum mechanics. The phase-matching (PM) QKD protocol allows the key rate to break the quantum channel secret key capacity limit without quantum repeaters, and the security of the protocol is demonstrated by using equivalent entanglement. In this paper, the wavelength division multiplexing (WDM) technique is applied to the PM-QKD protocol considering the effect of crosstalk noise on the secret key rate. The performance of PM-QKD protocol based on WDM with the influence of adjacent classical channels and Raman scattering is analyzed by numerical simulations to maximize the total secret key rate of the QKD, providing a reference for future implementations of QKD based on WDM techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call