Abstract

The performance of Pd–Ge based ohmic contacts, with and without Ti–Pt or Ti–Pt–Au capping layers, has been investigated. The contacts were deposited by electron beam evaporation, then characterized electrically using a modified transmission line method (TLM) and structurally using both cross-section and plan-view transmission electron microscopy (TEM). Although both capped and non-capped contact structures underwent the same phase transformations during annealing, capped contacts had significantly better contact resistances (a minimum value of 4×10-7 Ω cm2 was achieved) – almost three orders of magnitude better. The superior performance is attributed to the capping layers providing protection for the Pd–Ge layers during contact processing, where the metallization was exposed to a CF4–O2 plasma, oxyen descumming, organic solvents and deionized water. Non-capped contacts exhibited PdGe decomposition and oxidation of exposed Ge. Long-term reliability testing of capped contacts showed virtually no change in contact resistance at 235°C (1350 h) and a sevenfold increase after ageing at 290°C for 370 h. There were no phase changes during ageing; the increase in contact resistance was attributed to interdiffusion between Ge and GaAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.