Abstract

Performance of a polymer electrolyte membrane fuel cell with a Pd cathode catalyst was systemically investigated in this study. The Pd catalyst was directly formed on a gas diffusion layer by using electrodeposition (Pd/GDL). The electrodeposition formed aggregates of Pd nanoparticles on a gas diffusion layer with the preferred orientation of Pd(111) and Pd(200). In addition, the Pd aggregates mainly formed on the top surface of the gas diffusion layer. The membrane electrode assembly was fabricated with Pd/GDL as the cathode. The performance of the membrane electrode assembly was investigated by varying hot pressing parameters and back pressures, and the operating condition for the polymer electrolyte membrane fuel cell was optimized. Notably, introducing back pressure increased operating current density at 0.6 V by up to 45%. Durability of the membrane electrode assembly was also examined. Negligible deterioration of surface morphology of the Pd catalyst was observed even after accelerated stress testing, except for a slight increase in particle size. The results indicate that deterioration of the Pd cathode catalyst was not a major factor affecting overall single-cell performance degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call