Abstract

Electricity generation from solar energy has become very desirable because it is abundantly available and eco-friendly. Mathematical modeling of various components of a Solar Thermal Power plant (STP) is warranted to predict the optimal and efficient operation of the plant. The efficiency and reliability of STPs are maximized based on different operating strategies. Opting for proper Heat Transfer Fluid (HTF), which is proposed in this paper, helps in reducing operating complexity and lowering procurement cost. The Parabolic Trough Collector (PTC) is the heart of STP, where proper focusing of PTC towards solar radiation is the primary task to maximize the outlet temperature of HTF. This maximum temperature plays a major factor due to diurnal solar radiation variation, and its disturbance nature, with the frequent startup and shutdown of STP, is avoided. In this paper, the PTC component is modeled from the first principle, and, with different HTF, the performance of PTC with constant and quadratic solar disturbances is analyzed along with classical control system designs. Through this, the operator will be able to choose proper HTF and resize the plant components depending on plant location and weather conditions. Furthermore, the thermal energy is collected for therminol oil, molten salt, and water; and its performance with different inputs of solar radiation is analyzed along with closed-loop controllers. Thermal energy extracted by therminol oil, molten salt, and water with constant solar radiation results in 81.7%,73.7% and 18.7%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.