Abstract

An oxalate-doped hydroxyapatite (O-HAP) was hydrothermally synthesized for aqueous lead (Pb) removal based on the solubility-limiting ability of oxalate and phosphate over pH range 4–9. Free Pb2+ activities in oxalate and/or phosphate systems were controlled by oxalate to form soluble ion pairs Pb-Ox (aq) and Pb-Ox22− at pH 4–7 while in preference to persist as PbHPO4 (aq) when pH ≥ 8. Both phosphate and oxalate exhibited excellent efficiency in reducing Pb solubility, causing over 99 % of Pb precipitated from solution following oxalate < oxalate-phosphate < phosphate. The Visual MINTEQ model overestimated dissolved Pb and free Pb2+ in nearly all of the reaction systems due to the ill-defined stability constants and solubility products for Pb ion-pair formation. The addition of phosphate acting as a buffer in Pb-oxalate systems tended to lessen the spontaneous pH shifts within 24 h to equilibrate proton release from Pb precipitation and hydrolysis, indicating lower solubility products and faster kinetics of Pb-phosphate mineral formation. The TEM-EDS, FTIR and XRD identified a block-shaped Pb-oxalate mineral phase as the only precipitate at acidic pH while substituted by phosphate to form rod-shaped Pb5(PO4)3OH and Pb3(PO4)2 precipitates as pH increased. The optimum hydrothermal conditions of O-HAP were 433 K, pH 9 and P/Ox doping ratio of 0.5 for 24 h. Batch experiments revealed the endothermic process of O-HAP toward Pb with the maximum adsorption capacity reaching 2333 mg/g at a pH of 7, reaction time of 12 h, initial Pb concentration of 600 mg/L and temperature of 308 K, which were best fitted with the pseudo-second-order kinetic model and Langmuir isotherm. The synergetic mechanisms of O-HAP for Pb removal involved dissolution-precipitation, adsorption and ion exchange. This study provides an insight in developing effective remediation strategies for heavy metal contamination by interacting between low-molecular-weight organic acids and secondary mineral phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.