Abstract

Most cellular radio systems provide for the use of transmitter power control to reduce cochannel interference for a given channel allocation. Efficient interference management aims at achieving acceptable carrier-to-interference ratios in all active communication links in the system. Such schemes for the control of cochannel interference are investigated. The effect of adjacent channel interference is neglected. As a performance measure, the interference (outage) probability is used, i.e., the probability that a randomly chosen link is subject to excessive interference. In order to derive upper performance bounds for transmitter power control schemes, algorithms that are optimum in the sense that the interference probability is minimized are suggested. Numerical results indicate that these upper bounds exceed the performance of conventional systems by an order of magnitude regarding interference suppression and by a factor of 3 to 4 regarding the system capacity. The structure of the optimum algorithm shows that efficient power control and dynamic channel assignment algorithms are closely related.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call